GNU libiberty

Phil Edwards et al.

Copyright (©) 2001-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free

Documentation License”.

Table of Contents

1 UsSing ... 1
2 OVerview. ... 2
2.1 Supplemental Functions i 2
2.2 Replacement Functions i 2
2.2.1 Memory Allocationouiiiiiiiiiiiii e, 2
2.2.2 Exit Handlers......... .o i 2
2.2.3 Error Reporting ... 2
2.3 EXEenSionsoiiiiiii 3
2.3.1 Obstacks ... 3
2.3.1.1 Creating Obstackso i, 3
2.3.1.2 Preparing for Using Obstacks 3
2.3.1.3 Allocation in an Obstack..............., 5
2.3.1.4 Freeing Objects in an Obstack 6
2.3.1.5 Obstack Functions and Macros........................ 6
2.3.1.6 Growing Objects.......ccovuiiiiiiiii i 7
2.3.1.7 Extra Fast Growing Objects 8
2.3.1.8 Status of an Obstack............... ... L. 10
2.3.1.9 Alignment of Data in Obstacks....................... 10
2.3.1.10 Obstack Chunks......... ... i i, 11
2.3.1.11 Summary of Obstack Macros........................ 11
3 Function, Variable, and Macro Listing........ 14
Appendix A Licenses................cccoiiiiio... 37
A.1 GNU LESSER GENERAL PUBLIC LICENSE................ 37
A1l Preamble...... ..o 37

A.1.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATIONt 38
A.1.3 How to Apply These Terms to Your New Libraries........ 45
A2 B D . 46

1 Using

To date, 1ibiberty is generally not installed on its own. It has evolved over years but does
not have its own version number nor release schedule.

Possibly the easiest way to use libiberty in your projects is to drop the libiberty
code into your project’s sources, and to build the library along with your own sources; the
library would then be linked in at the end. This prevents any possible version mismatches
with other copies of libiberty elsewhere on the system.

Passing --enable-install-libiberty to the configure script when building
libiberty causes the header files and archive library to be installed when make install
is run. This option also takes an (optional) argument to specify the installation location,
in the same manner as —-prefix.

For your own projects, an approach which offers stability and flexibility is to include
libiberty with your code, but allow the end user to optionally choose to use a previously-
installed version instead. In this way the user may choose (for example) to install 1ibiberty
as part of GCC, and use that version for all software built with that compiler. (This
approach has proven useful with software using the GNU readline library.)

Making use of libiberty code usually requires that you include one or more header
files from the libiberty distribution. (They will be named as necessary in the function
descriptions.) At link time, you will need to add -1iberty to your link command invocation.

2 Overview

Functions contained in 1libiberty can be divided into three general categories.

2.1 Supplemental Functions

Certain operating systems do not provide functions which have since become standardized,
or at least common. For example, the Single Unix Specification Version 2 requires that the
basename function be provided, but an OS which predates that specification might not have
this function. This should not prevent well-written code from running on such a system.

Similarly, some functions exist only among a particular “flavor” or “family” of operating
systems. As an example, the bzero function is often not present on systems outside the
BSD-derived family of systems.

Many such functions are provided in 1ibiberty. They are quickly listed here with little
description, as systems which lack them become less and less common. Each function foo is
implemented in foo.c but not declared in any libiberty header file; more comments and
caveats for each function’s implementation are often available in the source file. Generally,
the function can simply be declared as extern.

2.2 Replacement Functions

Some functions have extremely limited implementations on different platforms. Other func-
tions are tedious to use correctly; for example, proper use of malloc calls for the return
value to be checked and appropriate action taken if memory has been exhausted. A group
of “replacement functions” is available in 1libiberty to address these issues for some of the
most commonly used subroutines.

All of these functions are declared in the libiberty.h header file. Many of the imple-
mentations will use preprocessor macros set by GNU Autoconf, if you decide to make use
of that program. Some of these functions may call one another.

2.2.1 Memory Allocation

The functions beginning with the letter ‘x’ are wrappers around standard functions; the
functions provided by the system environment are called and their results checked before
the results are passed back to client code. If the standard functions fail, these wrappers
will terminate the program. Thus, these versions can be used with impunity.

2.2.2 Exit Handlers

The existence and implementation of the atexit routine varies amongst the flavors of Unix.
libiberty provides an unvarying dependable implementation via xatexit and xexit.

2.2.3 Error Reporting

These are a set of routines to facilitate programming with the system errno interface.
The libiberty source file strerror.c contains a good deal of documentation for these
functions.

Chapter 2: Overview 3

2.3 Extensions

libiberty includes additional functionality above and beyond standard functions, which
has proven generically useful in GNU programs, such as obstacks and regex. These functions
are often copied from other projects as they gain popularity, and are included here to provide
a central location from which to use, maintain, and distribute them.

2.3.1 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create any number of
separate obstacks, and then allocate objects in specified obstacks. Within each obstack, the
last object allocated must always be the first one freed, but distinct obstacks are independent
of each other.

Aside from this one constraint of order of freeing, obstacks are totally general: an obstack
can contain any number of objects of any size. They are implemented with macros, so
allocation is usually very fast as long as the objects are usually small. And the only space
overhead per object is the padding needed to start each object on a suitable boundary.

2.3.1.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file obstack.h.

struct obstack [Data Type]
An obstack is represented by a data structure of type struct obstack. This structure
has a small fixed size; it records the status of the obstack and how to find the space in
which objects are allocated. It does not contain any of the objects themselves. You
should not try to access the contents of the structure directly; use only the macros
described in this chapter.

You can declare variables of type struct obstack and use them as obstacks, or you can
allocate obstacks dynamically like any other kind of object. Dynamic allocation of obstacks
allows your program to have a variable number of different stacks. (You can even allocate
an obstack structure in another obstack, but this is rarely useful.)

All the macros that work with obstacks require you to specify which obstack to use.
You do this with a pointer of type struct obstack *. In the following, we often say “an
obstack” when strictly speaking the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The struct
obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that won’t
fit in the previous chunk. Since the obstack library manages chunks automatically, you
don’t need to pay much attention to them, but you do need to supply a function which the
obstack library should use to get a chunk. Usually you supply a function which uses malloc
directly or indirectly. You must also supply a function to free a chunk. These matters are
described in the following section.

2.3.1.2 Preparing for Using Obstacks

Each source file in which you plan to use obstacks must include the header file obstack.h,
like this:

#include <obstack.h>

Chapter 2: Overview 4

Also, if the source file uses the macro obstack_init, it must declare or define two macros
that will be called by the obstack library. One, obstack_chunk_alloc, is used to allocate
the chunks of memory into which objects are packed. The other, obstack_chunk_free, is
used to return chunks when the objects in them are freed. These macros should appear
before any use of obstacks in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see Section “Un-
constrained Allocation” in The GNU C Library Reference Manual). This is done with the
following pair of macro definitions:

#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free

Though the memory you get using obstacks really comes from malloc, using obstacks is
faster because malloc is called less often, for larger blocks of memory. See Section 2.3.1.10
[Obstack Chunks], page 11, for full details.

At run time, before the program can use a struct obstack object as an obstack, it
must initialize the obstack by calling obstack_init or one of its variants, obstack_begin,
obstack_specify_allocation, or obstack_specify_allocation_with_arg.

int obstack_init (struct obstack *obstack-ptr) [Function]
Initialize obstack obstack-ptr for allocation of objects. This macro calls the obstack’s
obstack_chunk_alloc function. If allocation of memory fails, the function pointed
to by obstack_alloc_failed_handler is called. The obstack_init macro always
returns 1 (Compatibility notice: Former versions of obstack returned 0 if allocation
failed).

Here are two examples of how to allocate the space for an obstack and initialize it. First,
an obstack that is a static variable:

static struct obstack myobstack;
obstack_init (&myobstack);

Second, an obstack that is itself dynamically allocated:

struct obstack *myobstack_ptr
= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

int obstack_begin (struct obstack *obstack-ptr, size_t [Function]
chunk_size)
Like obstack_init, but specify chunks to be at least chunk_size bytes in size.

int obstack_specify_allocation (struct obstack *obstack-ptr, [Function]
size_t chunk_size, size_t alignment, void *(*chunkfun) (size_t), void
(*freefun) (void *))
Like obstack_init, specifying chunk size, chunk alignment, and memory allocation
functions. A chunk_size or alignment of zero results in the default size or alignment
respectively being used.

Chapter 2: Overview 5

int obstack_specify_allocation_with_arg (struct obstack [Function]
*obstack-ptr, size_t chunk_size, size_t alignment, void *(*chunkfun)
(void *, size_t), void (*freefun) (void *, void *), void *arg)
Like obstack_specify_allocation, but specifying memory allocation functions that
take an extra first argument, arg.

obstack_alloc_failed_handler [Variable]
The value of this variable is a pointer to a function that obstack uses when obstack_
chunk_alloc fails to allocate memory. The default action is to print a message and
abort. You should supply a function that either calls exit (see Section “Program
Termination” in The GNU C Library Reference Manual) or longjmp (see Section
“Non-Local Exits” in The GNU C Library Reference Manual) and doesn’t return.

void my_obstack_alloc_failed (void)

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

2.3.1.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_alloc, which is
invoked almost like malloc.

void * obstack_alloc (struct obstack *obstack-ptr, size_t size) [Function]
This allocates an uninitialized block of size bytes in an obstack and returns its address.
Here obstack-ptr specifies which obstack to allocate the block in; it is the address
of the struct obstack object which represents the obstack. Each obstack macro
requires you to specify an obstack-ptr as the first argument.

This macro calls the obstack’s obstack_chunk_alloc function if it needs to allocate
a new chunk of memory; it calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

For example, here is a function that allocates a copy of a string str in a specific obstack,
which is in the variable string_obstack:

struct obstack string_obstack;

char *
copystring (char *string)

size_t len = strlen (string) + 1;

char *s = (char *) obstack_alloc (&string_obstack, len);
memcpy (s, string, len);

return s;

}

To allocate a block with specified contents, use the macro obstack_copy.

void * obstack_copy (struct obstack *obstack-ptr, void [Function]
*address, size_t size)

This allocates a block and initializes it by copying size bytes of data starting

at address. It calls obstack_alloc_failed_handler if allocation of memory by
obstack_chunk_alloc failed.

Chapter 2: Overview 6

void * obstack_copyO (struct obstack *obstack-ptr, void [Function]
*address, size_t size)
Like obstack_copy, but appends an extra byte containing a null character. This
extra byte is not counted in the argument size.

The obstack_copy0 macro is convenient for copying a sequence of characters into an
obstack as a null-terminated string. Here is an example of its use:

char *
obstack_savestring (char *addr, size_t size)
{
return obstack_copy0 (&myobstack, addr, size);
}

Contrast this with the previous example of savestring using malloc (see Section “Basic
Allocation” in The GNU C Library Reference Manual).

2.3.1.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the macro obstack_free. Since the obstack
is a stack of objects, freeing one object automatically frees all other objects allocated more
recently in the same obstack.

void obstack_free (struct obstack *obstack-ptr, void *object) [Function]
If object is a null pointer, everything allocated in the obstack is freed. Otherwise,
object must be the address of an object allocated in the obstack. Then object is freed,
along with everything allocated in obstack since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free all
memory in an obstack but leave it valid for further allocation, call obstack_free with the
address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the objects in
a chunk become free, the obstack library automatically frees the chunk (see Section 2.3.1.2
[Preparing for Obstacks], page 3). Then other obstacks, or non-obstack allocation, can reuse
the space of the chunk.

2.3.1.5 Obstack Functions and Macros

The interfaces for using obstacks are shown here as functions to specify the return type
and argument types, but they are really defined as macros. This means that the arguments
don’t actually have types, but they generally behave as if they have the types shown. You
can call these macros like functions, but you cannot use them in any other way (for example,
you cannot take their address).

Calling the macros requires a special precaution: namely, the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than once. For
example, if you write this:

obstack_alloc (get_obstack (), 4);
you will find that get_obstack may be called several times. If you use *obstack_list_

ptr++ as the obstack pointer argument, you will get very strange results since the incre-
mentation may occur several times.

Chapter 2: Overview 7

If you use the GNU C compiler, this precaution is not necessary, because various language
extensions in GNU C permit defining the macros so as to compute each argument only once.

Note that arguments other than the first will only be evaluated once, even when not

using GNU C.

obstack.h does declare a number of functions, _obstack_begin, _obstack_begin_1,
_obstack_newchunk, _obstack_free, and _obstack_memory_used. You should not call
these directly.

2.3.1.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build up an object
step by step, adding one or more bytes at a time to the end of the object. With this
technique, you do not need to know how much data you will put in the object until you
come to the end of it. We call this the technique of growing objects. The special macros
for adding data to the growing object are described in this section.

You don’t need to do anything special when you start to grow an object. Using one of
the macros to add data to the object automatically starts it. However, it is necessary to
say explicitly when the object is finished. This is done with obstack_finish.

The actual address of the object thus built up is not known until the object is finished.
Until then, it always remains possible that you will add so much data that the object must
be copied into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary allocation
of another object. If you try to do so, the space already added to the growing object will
become part of the other object.

void obstack_blank (struct obstack *obstack-ptr, size_t size) [Function]
The most basic macro for adding to a growing object is obstack_blank, which adds
space without initializing it.

void obstack_grow (struct obstack *obstack-ptr, void *data, [Function]
size_t size)
To add a block of initialized space, use obstack_grow, which is the growing-object
analogue of obstack_copy. It adds size bytes of data to the growing object, copying
the contents from data.

void obstack_growO (struct obstack *obstack-ptr, void *data, [Function]
size_t size)
This is the growing-object analogue of obstack_copy0. It adds size bytes copied from
data, followed by an additional null character.

void obstack_lgrow (struct obstack *obstack-ptr, char c) [Function]
To add one character at a time, use obstack_1grow. It adds a single byte containing
c to the growing object.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data) [Function]
Adding the value of a pointer one can use obstack_ptr_grow. It adds sizeof (void
*) bytes containing the value of data.

Chapter 2: Overview 8

void obstack_int_grow (struct obstack *obstack-ptr, int data) [Function]
A single value of type int can be added by using obstack_int_grow. It adds sizeof
(int) bytes to the growing object and initializes them with the value of data.

void * obstack_finish (struct obstack *obstack-ptr) [Function]
When you are finished growing the object, use obstack_finish to close it off and
return its final address.

Once you have finished the object, the obstack is available for ordinary allocation or
for growing another object.

When you build an object by growing it, you will probably need to know afterward how
long it became. You need not keep track of this as you grow the object, because you can find
out the length from the obstack with obstack_object_size, before finishing the object.

size_t obstack_object_size (struct obstack *obstack-ptr) [Function]
This macro returns the current size of the growing object, in bytes. Remember to
call obstack_object_size before finishing the object. After it is finished, obstack_
object_size will return zero.

If you have started growing an object and wish to cancel it, you should finish it and then
free it, like this:
obstack_free (obstack_ptr, obstack_finish (obstack_ptr));

This has no effect if no object was growing.

2.3.1.7 Extra Fast Growing Objects

The usual macros for growing objects incur overhead for checking whether there is room
for the new growth in the current chunk. If you are frequently constructing objects in small
steps of growth, this overhead can be significant.

You can reduce the overhead by using special “fast growth” macros that grow the object
without checking. In order to have a robust program, you must do the checking yourself. If
you do this checking in the simplest way each time you are about to add data to the object,
you have not saved anything, because that is what the ordinary growth macros do. But if
you can arrange to check less often, or check more efficiently, then you make the program
faster.

obstack_room returns the amount of room available in the current chunk.

size_t obstack_room (struct obstack *obstack-ptr) [Function]
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast growth
macros.

While you know there is room, you can use these fast growth macros for adding data to
a growing object:

void obstack_igrow_fast (struct obstack *obstack-ptr, char c) [Function]
obstack_lgrow_fast adds one byte containing the character c to the growing object
in obstack obstack-ptr.

Chapter 2: Overview 9

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void [Function]
*data)
obstack_ptr_grow_fast adds sizeof (void *) bytes containing the value of data
to the growing object in obstack obstack-ptr.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int [Function]
data)
obstack_int_grow_fast adds sizeof (int) bytes containing the value of data to
the growing object in obstack obstack-ptr.

void obstack_blank_fast (struct obstack *obstack-ptr, size_t [Function]
size)
obstack_blank_fast adds size bytes to the growing object in obstack obstack-ptr
without initializing them.

When you check for space using obstack_room and there is not enough room for what you
want to add, the fast growth macros are not safe. In this case, simply use the corresponding
ordinary growth macro instead. Very soon this will copy the object to a new chunk; then
there will be lots of room available again.

So, each time you use an ordinary growth macro, check afterward for sufficient space
using obstack_room. Once the object is copied to a new chunk, there will be plenty of
space again, so the program will start using the fast growth macros again.

Here is an example:

void
add_string (struct obstack *obstack, const char *ptr, size_t len)
{
while (len > 0)
{
size_t room = obstack_room (obstack);
if (room == 0)
{
/* Not enough room. Add one character slowly,
which may copy to a new chunk and make room. */
obstack_lgrow (obstack, *ptr++);
len--;

else
{
if (room > len)
room = len;
/* Add fast as much as we have room for. */
len -= room;
while (room-- > 0)
obstack_lgrow_fast (obstack, *ptr++);

}

You can use obstack_blank_fast with a “negative” size argument to make the current
object smaller. Just don’t try to shrink it beyond zero length—there’s no telling what will
happen if you do that. Earlier versions of obstacks allowed you to use obstack_blank to
shrink objects. This will no longer work.

Chapter 2: Overview 10

2.3.1.8 Status of an Obstack

Here are macros that provide information on the current status of allocation in an obstack.
You can use them to learn about an object while still growing it.

void * obstack_base (struct obstack *obstack-ptr) [Function]
This macro returns the tentative address of the beginning of the currently growing
object in obstack-ptr. If you finish the object immediately, it will have that address.
If you make it larger first, it may outgrow the current chunk—then its address will
change!

If no object is growing, this value says where the next object you allocate will start
(once again assuming it fits in the current chunk).

void * obstack_next_free (struct obstack *obstack-ptr) [Function]
This macro returns the address of the first free byte in the current chunk of obstack
obstack-ptr. This is the end of the currently growing object. If no object is growing,
obstack_next_free returns the same value as obstack_base.

size_t obstack_object_size (struct obstack *obstack-ptr) [Function]
This macro returns the size in bytes of the currently growing object. This is equivalent
to

((size_t) (obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)))

2.3.1.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack automatically
starts on an address that is a multiple of the specified boundary. By default, this boundary
is aligned so that the object can hold any type of data.

To access an obstack’s alignment boundary, use the macro obstack_alignment_mask.

size_t obstack_alignment_mask (struct obstack *obstack-ptr) [Macro]
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in the
address of an object should be 0. The mask value should be one less than a power of
2; the effect is that all object addresses are multiples of that power of 2. The default
value of the mask is a value that allows aligned objects to hold any type of data: for
example, if its value is 3, any type of data can be stored at locations whose addresses
are multiples of 4. A mask value of 0 means an object can start on any multiple of 1
(that is, no alignment is required).

The expansion of the macro obstack_alignment_mask is an lvalue, so you can alter
the mask by assignment. For example, this statement:

obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next time an
object is allocated or finished in the obstack. If you are not growing an object, you can
make the new alignment mask take effect immediately by calling obstack_finish. This
will finish a zero-length object and then do proper alignment for the next object.

Chapter 2: Overview 11

2.3.1.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then parceling out
space in the chunks to satisfy your requests. Chunks are normally 4096 bytes long unless
you specify a different chunk size. The chunk size includes 8 bytes of overhead that are
not actually used for storing objects. Regardless of the specified size, longer chunks will be
allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_alloc,
which you must define. When a chunk is no longer needed because you have freed all the
objects in it, the obstack library frees the chunk by calling obstack_chunk_free, which
you must also define.

These two must be defined (as macros) or declared (as functions) in each source file that
uses obstack_init (see Section 2.3.1.1 [Creating Obstacks|, page 3). Most often they are
defined as macros like this:

#define obstack_chunk_alloc malloc
#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with arguments
will not work! It is necessary that obstack_chunk_alloc or obstack_chunk_free, alone,
expand into a function name if it is not itself a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2. The default
chunk size, 4096, was chosen because it is long enough to satisfy many typical requests on
the obstack yet short enough not to waste too much memory in the portion of the last chunk
not yet used.

size_t obstack_chunk_size (struct obstack *obstack-ptr) [Macro]
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by assigning
it a new value. Doing so does not affect the chunks already allocated, but will change the
size of chunks allocated for that particular obstack in the future. It is unlikely to be useful
to make the chunk size smaller, but making it larger might improve efficiency if you are
allocating many objects whose size is comparable to the chunk size. Here is how to do so
cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)
obstack_chunk_size (obstack_ptr) = new-chunk-size;

2.3.1.11 Summary of Obstack Macros

Here is a summary of all the macros associated with obstacks. Each takes the address of
an obstack (struct obstack *) as its first argument.

int obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack. See Section 2.3.1.1 [Creating Obstacks], page 3.

int obstack_begin (struct obstack *obstack-ptr, size_t chunk_size)
Initialize use of an obstack, with an initial chunk of chunk_size bytes.

Chapter 2: Overview 12

int obstack_specify_allocation (struct obstack *obstack-ptr, size_t
chunk_size, size_t alignment, void * (*chunkfun) (size_t), void (*freefun)
(void *))
Initialize use of an obstack, specifying intial chunk size, chunk alignment, and
memory allocation functions.

int obstack_specify_allocation_with_arg (struct obstack *obstack-ptr, size_t
chunk_size, size_t alignment, void * (*chunkfun) (void *, size_t), void
(xfreefun) (void *, void *), void *arg)
Like obstack_specify_allocation, but specifying memory allocation func-
tions that take an extra first argument, arg.

void *obstack_alloc (struct obstack *obstack-ptr, size_t size)
Allocate an object of size uninitialized bytes. See Section 2.3.1.3 [Allocation in
an Obstack], page 5.

void *obstack_copy (struct obstack *obstack-ptr, void *address, size_t size)
Allocate an object of size bytes, with contents copied from address. See
Section 2.3.1.3 [Allocation in an Obstack], page 5.

void *obstack_copyO (struct obstack *obstack-ptr, void *address, size_t size)
Allocate an object of size+l bytes, with size of them copied from address,
followed by a null character at the end. See Section 2.3.1.3 [Allocation in an
Obstack], page 5.

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object (and everything allocated in the specified obstack more recently
than object). See Section 2.3.1.4 [Freeing Obstack Objects|, page 6.

void obstack_blank (struct obstack *obstack-ptr, size_t size)
Add size uninitialized bytes to a growing object. See Section 2.3.1.6 [Growing
Objects], page 7.

void obstack_grow (struct obstack *obstack-ptr, void *address, size_t size)
Add size bytes, copied from address, to a growing object. See Section 2.3.1.6
[Growing Objects|, page 7.

void obstack_grow0 (struct obstack *obstack-ptr, void *address, size_t size)
Add size bytes, copied from address, to a growing object, and then add another
byte containing a null character. See Section 2.3.1.6 [Growing Objects|, page 7.

void obstack_lgrow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object. See Section 2.3.1.6
[Growing Objects], page 7.

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address. See
Section 2.3.1.6 [Growing Objects], page 7.

size_t obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object. See Section 2.3.1.6 [Grow-
ing Objects], page 7.

Chapter 2: Overview 13

void obstack_blank_fast (struct obstack *obstack-ptr, size_t size)
Add size uninitialized bytes to a growing object without checking that there is
enough room. See Section 2.3.1.7 [Extra Fast Growing], page 8.

void obstack_lgrow_fast (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object without checking that
there is enough room. See Section 2.3.1.7 [Extra Fast Growing], page 8.

size_t obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object. See
Section 2.3.1.7 [Extra Fast Growing], page 8.

size_t obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an lvalue. See
Section 2.3.1.9 [Obstacks Data Alignment], page 10.

size_t obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue. See Section 2.3.1.10 [Obstack
Chunks], page 11.

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object. See Section 2.3.1.8
[Status of an Obstack], page 10.

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object. See Section 2.3.1.8
[Status of an Obstack], page 10.

14

3 Function, Variable, and Macro Listing.

void* alloca (size_t size) [Replacement)]
This function allocates memory which will be automatically reclaimed after the pro-
cedure exits. The libiberty implementation does not free the memory immediately
but will do so eventually during subsequent calls to this function. Memory is allocated
using xmalloc under normal circumstances.

The header file alloca-conf.h can be used in conjunction with the GNU Autoconf
test AC_FUNC_ALLOCA to test for and properly make available this function. The AC_
FUNC_ALLOCA test requires that client code use a block of preprocessor code to be safe
(see the Autoconf manual for more); this header incorporates that logic and more,
including the possibility of a GCC built-in function.

int asprintf (char **resptr, const char *format, ...) [Extension]
Like sprintf, but instead of passing a pointer to a buffer, you pass a pointer to a
pointer. This function will compute the size of the buffer needed, allocate memory
with malloc, and store a pointer to the allocated memory in *resptr. The value
returned is the same as sprintf would return. If memory could not be allocated,
minus one is returned and NULL is stored in *resptr.

int atexit (void (*f)()) [Supplemental]
Causes function f to be called at exit. Returns 0.

char* basename (const char *name) [Supplemental]
Returns a pointer to the last component of pathname name. Behavior is undefined if
the pathname ends in a directory separator.

int bemp (char *x, char *y, int count) [Supplemental]
Compare