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Scope of this Manual

The User’s Guide for Toolkit Developers provides detailed information about the design of GEANT4 classes as well as
the information required to extend the current functionality of the GEANT4 toolkit. This manual is designed to:

* provide a repository of information for those who want to understand or refer to the detailed design of the toolkit,
and

 provide details and procedures for extending the functionality of the toolkit so that experienced users may
contribute code which is consistent with the overall design of GEANT4.

This manual is intended for developers and experienced users of GEANT4. It is assumed that the reader is already
familiar with functionality of the GEANT4 toolkit as explained in the “User’s Guide For Application Developers”,
and also has a working knowledge of programming using C++. A knowledge of object-oriented analysis and design
will also be useful in understanding this manual. It is also useful to consult the “Software Reference Manual” which
provides a list of GEANT4 classes and their major methods.

Detailed discussions of the physics included in GEANT4 are provided in the “Physics Reference Manual”.

CONTENTS 1
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CHAPTER
ONE

INTRODUCTION

1.1 How to use this manual

Part I: to understand the goal of the software design of GEANT4, it is useful to begin by reading the User Requirements
Document referred to in the next section.

Part II: “Design and Function of the GEANT4 Categories” provides detailed information about the design of each class
category and the classes in it. Before considering an extension of one of the toolkit categories, a detailed understanding
of that category is required.

Part III: :Extending Toolkit Functionality” explains in some detail how to extend the functionality of GEANT4. Most
of the class categories are covered and some, which are especially useful to most users, are covered in greater detail.

It is not necessary to understand the entire manual before adding a new functionality. To add a new physics process,
for example, only the following items must be read and understood:

* the design principle described in the “Physics processes” chapter of Part II
¢ techniques explained in the “Physics processes” chapter of Part II1.

1.2 User Requirements Document

At the beginning of GEANT4 development, a set of user requirements was collected in order to inform the object-
oriented analysis and design of the toolkit. The User Requirements Document follows the PSS-05 software engineering
standards and is available at

http://cern.ch/geant4/OOAandD/URD.pdf .

This document provides a general description of the main capabilities and constraints of the toolkit. It also defines
three types of users characterised by their level of interaction with the system. Specific requirements are also listed
and classified.



http://cern.ch/geant4/OOAandD/URD.pdf
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CHAPTER
TWO

DESIGN AND FUNCTION OF GEANT4 CATEGORIES

2.1 Introduction

GEANT4 exploits advanced software engineering techniques based on the Booch/UML Object Oriented Methodology
and follows the evolution of the ESA Software Engineering Standards for the development process. The “spiral”,
or iterative, approach has been adopted. User requirements were collected in the initial phase and problem domain
decomposition, object-oriented methods, and CASE tools were used for analysis and design. This produced a clear
hierarchical structure of sub-domains linked by a uni-directional flow of dependencies. This led to a software product
which is modular and flexible (a toolkit) and in which the physics implementation is transparent and open to user
validation of physics predictions. It allows the user to understand, customise and extend the toolkit in all domains. At
the same time the modular architecture allows the user to load only needed components.

2.2 Run

2.2.1 Design Philosophy

The run category manages collections of events (runs). In a single run the events share the detector implementation,
physics conditions and primary generation.

The classes associated with the run category can be considered as the main and higher level application programming
interface (API) used in a GEANT4 application. A simple application will use concrete classes provided with the toolkit,
the developer will provide the detector description a primary generator (possibly using one of the general purpose ones
provided with the toolkit), define the physics for the application (the physics list, possibly one of the few provided with
the toolkit) and optional user actions to interact with the simulation itself.

In few cases it is however necessary to modify the default behaviour of one or more classes in this category to allow
for a user-customisation. As an example the class G4MTRunManager extends the basic run-manager class to take
into account event level parallelism via multi-threading.

During a run some states of the application are invariant and cannot be modified: the physics list (i.e. the list of
processes attached to each particle) and the detector layout (note that some geometry primitives allow for changing
parameters during the event run: parameterisations. However technically the class instances representing the detector
layout do not change during a run).
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2.2.2 Class Design

The relevant classes for the run category are shown here. This show, in particular, the relation between classes
for the case of a multi-threaded application. For a sequential application the diagram is simplified since no
G4WorkerRunManager class exist and G4MTRunManager is replaced by G4RunManager:

]

G4VUserPhysicsList G4VUserDetectorConstruction G4VUserActionlnitialization

\

User Initializations

G4MTRunManager G4WorkerRunManager

.

2
G4UserWorkerlnitialization

v

1

G4VUserPrimaryGeneratorAction G4UserRunAction

User Actions

G4UserSteppingAction

G4UserTrackingAction G4UserStackingAction

Fig. 2.1: Class diagram for main run category classes.

For a description of multi-threading functionality refer to Parallelism in : multi-threading capabilities chapter.

One of the main functions of the run category is to control the life-cycle of a GEANT4 application, again with reference
to the case of a multi-threaded application the following schema describes it:

A list of the main classes for the category is provided:

G4Run - This class represents a run. An object of this class is constructed and deleted by G4RunManager.
G4RunManager - the run controller class. Users must register detector construction, physics list and primary
generator action classes to it. G4RunManager or a derived class must be a singleton. This class provides several
virtual methods that can be used to define user-specific behaviour for a GEANT4 application.
G4RunManagerKernel - provides control of the GEANT4 kernel. This class is constructed by G4RunManager.
This class does not provide virtual methods and user should not sub-class from it. The application
G4RunManager should own an instance of a G4RunManagerKernel singleton.
G4{MT,Worker}RunManager[Kernel] - specialised versions to provide a multi-threading enabled applica-
tion. Refer to chapter Parallelism in : multi-threading capabilities for additional information.
G4VUserDetectorConstruction - pure virtual base class that represents the simulation setup.
G4VUserParallelWorld - pure virtual base class of the user’s parallel world.

G4VUserPhysicsList - pure virtual base class for a physics list.

G4VUserPrimaryGeneratorAction - pure virtual class used by user to define the primary generation.

Chapter 2. Design and Function of GEANT4 Categories
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Application
I
| 1 G4MTRunManager
2: BeamOn Jl_
g
2.1: SetupGeometryAndPhysics
2.2: G4WorkerRunManager
—————— >
I
2.3: BeamOn :
.3.2: PrepareNextEvent 2.3.1: SimulateEvent
2.3.3: EndOfRun
2.3.4:
<
3: Terminate
3.1:
' >
> |
T |

! X X

Fig. 2.2: Life cycle of a GEANT4 application and main run category classes.

2.2. Run
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* G4VModularPhysicsList - Pure virtual class to construct a physics list from G4VPhysicsConstructor. More
modern and modular approach preferred in current versions of pre-packaged physics lists.

* G4UserRunAction - user action class for run. Instantiate user-derived G4Run and provides user-hooks for
begin and end of run.

* G4UserWorkerInitialization and G4User WorkerThreadInitialization - define here the concrete behaviour
for threading model. Both classes provide several virtual methods that can be modified in derived classes.

¢ G4VUserActionlInitialization - pure virtual class used by user to instantiate concrete instances of the user-
actions.

* G4WorkerThread - this class encapsulates thread-specific data.

* G4RNGHelper - helper class to register and use RNG seeds. Used by MT applications to guarantee repro-
ducibility.

2.3 Event

2.3.1 Design Philosophy

In high energy physics the primary unit of an experimental run is an event. The same concept is also known in other
fields as history. We retain the name from the HEP community. An event consists of a set of primary particles, and a
set of detector responses to these particles.

In GEANT4, objects of the G4Event class are the primary units of a simulation run. Before the event is pro-
cessed, it contains primary vertices and primary particles produced by a generator (a concrete implementation of a
G4VPrimaryGenerator). After the event is processed, it may also contain hits, digitisations, and optionally, trajec-
tories generated by the simulation and additional user information (a sub-class of G4VUserEventInformation). The
event category manages events and provides an abstract interface to the external generators.

G4Event and its content vertices and particles are independent of other classes. This isolation allows GEANT4-based
simulation programs to be independent of specific choices for physics generators and of specific solutions for storing
the “Monte Carlo truth”. G4Event avoids keeping any transient information which is not meaningful after event
processing is complete. Thus the user can store objects of this class for processing further down the program chain. For
performance reasons, G4Event and its content classes are not persistent. Instead the user must provide the transient-
to-persistent conversion.

The current event being simulated is managed by G4EventManager, a singleton responsible of handling the simulation
of the event. The tracks being followed for the current event are stored in a stack managed by G4StackManager.
Different stacks allow for fine control of the simulation (urgent, waiting and postponed stacks).

User hooks allow for a customisation of the simulation behaviour via G4UserEventAction, G4UserStackingAction
and G4VUserEventInformation.

Event generation is performed via a concrete implementation of a G4VPrimaryGenerator class. This is usually in-
stantiated by the user in the user-defined concrete implementation of G4V UserPrimaryGeneratorAction (belonging to
the run category). GEANT4 provides three concrete implementation of G4VPrimaryGenerator: G4ParticleGun, a sim-
ple generator that can shoot one or more primaries; G4HEPEvtInterface, specifically designed for HEP experiments
to read /HEPEVT/ common block format; and the G4GeneralParticleSource able to generate primaries distributed
according to complex and configurable distributions. This last possibility is described in detail in the Application
Developers Guide.

8 Chapter 2. Design and Function of GEANT4 Categories
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2.3.2 Class Design

* G4Event - this class represents an event. It is constructed and deleted by G4RunManager or its derived class.

* G4EventManager - this class controls an event. It must be a singleton and should be constructed by
G4RunManager.

* G4TrajectoryContainer - this class can contain the concrete G4VTrajectory objects defined by user or used to
display the current event.

¢ G4UserEventAction - the abstract base class to allow for a user to inject code at the beginning and end of an
event.

* G4UserStackingAction - the abstract base class to allow for the user to control and tune the stacking of particles.
See documentation in class and GEANT4 examples.

* G4StackManager - controls the stacks of tracks belonging to the event currently being processed. The three
stacks are: urgent, waiting and postponed. The first is of type G4SmartTrackStack while the other two are of
the simple G4TrackStack type.

* G4VPrimaryGenerator - the abstract base class of all of primary generators. This class has only one pure vir-
tual method, GeneratePrimary Vertex(), which takes a G4Event object, generates a primary vertex and associates
primary particles with the vertex.

UML class diagrams for classes related to the event and event generator classes are shown in Fig. 2.3.

GaVUserEventinformation

Cakvent Tracking

Hits & Digits FeventiD - int
AVTrajectory ) GavTrajeciory
x + int) : GaVTrajectory *
o

|-thePrimaryVertex

|-numberofPrimaryVertex : int ‘:D“S
|-eventAborted : boolean 0.1 ‘
//'9”m int

GaEvManMessenger
CasoManager currentEvent

1
GastackingMessenger

Globar \\ T
—SngTeten >
<esmaletons > g CaStackManager

Camvent s Pusho: Track - GdTrack *, newTraj - GaVTrajectory * = null) < int
I |+ProcessOneEvent() | +PopNextTrackinewTraj - GéVTrajectory **) - G4Track *

rocessOnekves
|+operation()

1 |treciassify

waiting, pffooned,furgent]
1 [ufgent]

GasmartTrackStack.

GaUserEventAction

+BeginOfEventAction(event - G4Event *)
+ EnfOfEventActiontevent ; G4Event %

<T->GaStackat

GaUsersackingAction
GaTrack %) - Gadl

=
+Newstage(
+PrepareNewEvent(

GaAdjointStackingAction

GASPSPosDistribution

CasPSARGDI
stribution

CaGeneralParticieSource

GdGeneralParticieSourceData

—

F AHEPEVUnterface GAaHEPEVIParticie
T

Fig. 2.3: Event Category UML Diagram. Classes in grey are to be sub-classed by user.
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2.4 Tracking

In GEANT4 the term ‘tracking’ means propagating a particle through a geometrical structure. There are two class
categories closely related each other to describe the particle propagation:

* tracking category: manages the contribution of the physics processes to the evolution of a track’s state and
provides information in sensitive volumes for hits and digitisation.
* track category: represents physical information of a particle to be propagated.

2.4.1 Design Philosophy

The tracking in GEANT4 is based on step-wise propagation of the particle through a given geometry. The overall
performance of the GEANT4 simulation depends critically on the CPU time spent to move the particle by one step.
Therefore the most important consideration in the object design of the tracking and track categories is maintaining high
execution speed of step-wise propagation of the particle while utilising the power of the object-oriented approach.

During the design stage of tracking two possible approaches were investigated: ‘single-class’ versus ‘structured-
classes’. The ‘single-class’ approach is based on a class design of mimicking a particle in the real world. This
approach looks object-oriented because a particle in the real world propagates by itself while interacting with the
material surrounding it. The design would be to integrate all functionalities required for the propagation of a particle
into a single class, for example the ‘particle class’. Combining all the necessary functionalities into this single class
exposes all the data attributes to a large number of methods in the class. This is against the strategy of ‘data hiding’,
which is one of the most important ingredients in the object-oriented approach.

The simulation of a particle passing through matter is a complex task involving particles, detector geometry, physics
interactions and hits in the detector. In the ‘structured-classes’ approach the class design is based on the idea of man-
aging the complexity of the tracking task by separating it into structured multiple classes. Object-oriented techniques,
such as inheritance and aggregation, play the essential roles in this design. In this approach it is also possible to cate-
gorise the classes into multiple categories. This approach enables each class category to be designed independently to
others.

The ‘structured-classes’ approach was employed for the tracking design because it provides more flexibility in the
designing and implementing stages.

In order to maintain high-performance tracking, use of the inheritance (‘is-a’ relation) hierarchy in the tracking and
categories was avoided as much as possible. For example, t rack and particle classes might have been designed
sothata track ‘isa’ particle. In this scheme, however, whenever a t rack object is used, time is spent copying
the data from the particle object into the t rack object. Adopting the aggregation (‘has-a’ relation) hierarchy
requires only pointers to be copied, thus providing a performance advantage.

2.4.2 Class Design

Track Category

The class diagram shown in Fig. 2.4 describes the static structure of classes in the ‘track’ category and their relation
to closely coupled classes. The design is characterised by the hierarchic structure of three major classes, i.e. G4Track,
G4Step and G4StepPoint. Main features of these classes are explained below.

* G4Track represents a particle which is pushed by G4SteppingManager. It holds information required for
stepping a particle, for example, the current position, the time since the start of stepping, the identification of
the geometrical volume which contains the particle, etc.

Dynamic information, such as particle momentum and energy, is held in the class through a pointer to the
G4DynamicParticle class. Static information, such as the particle mass and charge is stored in the

10 Chapter 2. Design and Function of GEANT4 Categories
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G4DynamicParticle class through the pointer to the G4ParticleDefinition class. Here the ag-
gregation hierarchical design is extensively employed to maintain high tracking performance.

G4Track has information of the most recent step pushed by G4SteppingManager as a G4Step object.
For G4Step see the explanation below.

G4Step keeps information of a step pushed by G4SteppingManager. It holds information, for example, the
step length and the deposited energy during a step. Information related to the begin/end points of a step are kept
in the aggregated objects of G4StepPoint, which is described below.

G4StepPoint keeps information of either the beginning or the end points of a step. This includes the geometry
position, the volume to which the step point belongs, the global time when a step point is created, the physics
process which occurred at a step point, etc.

Two objects of G4StepPoint (PreStepPoint and PostStepPoint) are aggregated by a step.

G4Track [ <<enumeration>> |
| G4TrackStatus

+GetDvnamicParticle() :G4|I3vnamicPart1‘cIe*
+GetTrackstatus() : G4TrackStatus - E
+GetTrackiBll : Gaint <>—| G4DynamicParticle |
+GetPosition() : GAThreeVector& 3

TG oTimel): Gadoubie O— %

+GetMomentum() : G4ThreeVector 5 T
+W;‘E&vphysicawclume* | G4ParticleDefinition |
+GetTouchableHandle() : G4TouchableHandle&

| o

G4Step

SteplLength() : Gadouble
otalEnergvDeposit() : G4double

PreStepPoint() : G4StepPoint* origin
tPostStenPoint() : GAStepPoint* .

tTrack() : G4Track* @origin | G4VProcess

: Y PreSteoPoint

Touchable, NextTauchable,

Touchable@origin
- {G4TouchableHandle [

?n]

@ 40D 0 40D o
a

G4logicalVolume |

+ 4+ + + +

PostStepPoint,
G4StepPoint

caused

+GetPosition() : G4ThreeVector&
+GetGlobalTime() : G4double
+GetMomentum() : G4ThreeVector
+GetPhvsicalVolume() : G4VPhysicalVolume*

+GetTouchableHandle{) : G4TouchableHandle&

current

00

Touchable / NextTouchable,

Fig. 2.4: Tracking design.

Tracking Category

As mentioned already the tracking in GEANT4 is based on step-wise propagation of the particle. The propagation
is steered by two major classes in the ‘tracking’ category - GATrackingManager and G4SteppingManager.
G4TrackingManager propagates a particle from its start point to end. G4SteppingManager steers a single
step in the particle propagation.

The class diagram shown in Fig. 2.4 describes the static structure of classes in the tracking category and their re-
lation to closely coupled classes. The design is characterised by the hierarchic structure of two major classes, i.e.
GATrackingManager and G4SteppingManager. Main features of these classes and their closely related ones
are explained below.

G4TrackingManager is responsible for processing one track passed from the event manager G4AEventManager.

G4EventManager belongs to the event class category and is the hierarchically upper manager
class to G4TrackingManager - see the previous section Event for details. Receiving one track
G4TrackingManager propagates it step-by-step. Steering each step is delegated to the stepping manager
G4SteppingManager, which is the the hierarchically lower manager class to G4TrackingManager.
G4TrackingManager aggregates the pointers to closely related classes:

* G4SteppingManager (composite aggregation)

* G4Trajectory (composite aggregation)

24,

Tracking 11
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* G4UserTrackingAction (composite aggregation)
* G4Track (shared aggregation)

G4SteppingManager plays an essential role in transporting a particle. Its public method Stepping () steers prop-
agation of the particle by one step. In this method messages are passed to objects in the categories which
are related to particle propagation, such as geometry and physics processes. In designing the message passing
scheme between G4SteppingManager and physics processes, the key feature is the abstraction of physics
processes utilising the inheritance hierarchy. The hierarchical design of the physics interactions enables the step-
ping manager to handle them as abstract objects. Hence, the manager need not interact directly with concrete
physics process objects such as bremsstrahlung, pair creation, etc. The actual invocations of various interactions
during the stepping are done through a dynamic binding mechanism. This mechanism shields the tracking cate-
gory from any change in the design of the physics process classes, including the addition or subtraction of new
processes.

G4SteppingManager aggregates pointers to closely related classes:
* G4Navigator (geometry category)
* G4Track under the current tracking (track category)
* G4TrackVector for the list of secondaries created during the current tracking (track category)
* G4UserSteppingAction
* G4ProcessManager (physics processes category)
* G4ParticleChange (physics processes category)

G4TrajectoryPoint holds information of the particle after propagating one step. Among other things, it includes
information on space-time, energy-momentum and geometrical volumes.

GA4Trajectory aggregates all GATrajectoryPoint objects which belong to the particle being propagated.
G4TrackingManager takes care of adding the G4TrajectoryPoint to a G4Trajectory object if
the user requested it (see Geant4 User’s Guide For Application Developers). The life of a G4Trajectory
object spans an event, contrary to G4Track objects, which are deleted from memory after being processed.
G4RichTrajectory and G4SmoothTrajectory are derived classes from G4Trajectory. These
classes are used for elaborate drawing of a trajectory on a graphic device.

G4UserTrackingAction is a base class from which user actions at the beginning or end of tracking may be derived.

G4UserSteppingAction is a base class from which user actions at the beginning or end of each step may be derived.

2.4.3 Tracking Algorithm

The key classes for tracking in GEANT4 are G4TrackingManager and G4SteppingManager. The singleton
object ‘TrackingManager’ created from the class G4ATrackingManager keeps all information related to a particular
track, and it also manages all actions necessary to complete the tracking. The tracking proceeds by pushing a particle
by a step, the length of which is defined by one of the active physics processes. The ‘TrackingManager’ object dele-
gates the management of each step to the object ‘SteppingManager’ created from the class G4SteppingManager .
This object keeps all information related to a single step.

The public method ProcessOneTrack () in G4TrackingManager is the key of managing the tracking, while
the public method Stepping () in G4SteppingManager is the key of managing one step. The basic algorithms
used in these methods are described below.

ProcessOneTrack() in G4TrackingManager:

Clear the secondary particle vector before starting to track the particle.
Invoke pre-tracking user intervention process.
Construct a trajectory if it is requested.
Give SteppingManager the pointer to the track which will be tracked.
Inform ‘beginning of tracking’ to all the active physics processes.
Track the particle step-by-step while it is alive:

 Call the method ‘Stepping’ of G4SteppingManager.

* Append a trajectory point to the trajectory object if it is requested.
Invoke post-tracking user intervention process.
8. Delete the trajectory if it was created.

SARNAIF IR

=~

12 Chapter 2. Design and Function of GEANT4 Categories


http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html

Geant4 User’s Guide for Toolkit Developers, Release 11.0

Stepping() in G4SteppingManager:

1. Initialise current step.
2. If the given particle has ‘zero’ kinetic energy, get the minimum life time from all the at rest processes and invoke
InvokeAtRestDoltProcs of the selected AtRest processes.
3. If particle has ‘non-zero’ kinetic energy:
* Invoke the method ‘DefinePhysicalStepLength’, that finds the minimum step length demanded by the
active processes.
* Invoke the method ‘InvokeAlongStepDoltProcs’.
» Update current track properties by taking into account all changes by ‘AlongStepDolt’ methods of the
processes .
» Update the value ‘safety’.
* Invoke Invoke the method ‘PostStepDoltPrcs’ of the active discrete process.
» Update the track length.
» Send G4Step information to Hit/Dig if the volume is sensitive.
* Invoke the user intervention process.
* Return the value of the StepStatus.

2.4.4 Interaction with Physics Processes

The interaction of the tracking category with the physics processes is done in two stages by G4SteppingManager.
The first stage is to find minimum step length demanded by active discrete and continues physics processes. Also to
find the processes which will be invoked in the step. The second stage is to execute the selected processes by calling
their Dolt methods. More details of the interaction are explained below.

The first stage of the interaction with the physics processes is to execute the private method
DefinePhysicalStepLength () of G4SteppingManager. The general flow in this method is as fol-
lows:

¢ Obtain ‘maximum allowed step’ in the volume define by the user through G4UserLimits.

* The PostStepGetPhysicallnteractionLength methods of all active processes are called. Each process returns a
step length and the process which proposed the minimum value is identified - sometimes this race of selection
is called the GPIL (Get Physical Interaction Length) selection. The method also returns the G4ForceCondition
flag which indicate if the process is forced for execution or not:

— Forced : Corresponding PostStepDolt is forced.

— NotForced : Corresponding PostStepDolt is not forced unless this process limits the step.

— Conditionally : Only when AlongStepDolt limits the step, corresponding PostStepDolt is invoked.
— ExclusivelyForced : Corresponding PostStepDolt is exclusively forced.

* Then the AlongStepGetPhysicallnteractionLength methods of all active processes are called. Each process
returns a step length and the process which proposed the minimum value is identified. This method also returns
a fGPILSelection flag, to indicate if the process can join the race of selection:

— CandidateForSelection: this process can be the winner. If its step length is the smallest, it will be the
process defining the step

— NotCandidateForSelection: this process cannot be the winner. Even if its step length is taken as the
smallest, it will not be the process defining the step

The second stage of the interaction mentioned above is divided in three actions.

The first action is to invoke the AlongStepDolt method of all processes by calling the private method
InvokeAlongStepDolIts () of G4SteppingManager. The general flow in this method is as follows:

« If the current step is defined by a process which returned ‘ExclusivelyForced’, no AlongStepDolt method will
be invoked.

* Else, all the active continuous processes will be invoked, and they return the ParticleChange. Then the following
actions are taken:

2.4. Tracking 13
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Update the G4Step information by using final state information of the track given by a physics process.
This is done through the UpdateStepForAlongStep method of the ParticleChange.

Apply the production cut to all created secondaries by invoking the private method ApplyProductionCut()
of G4SteppingManager . Actions taken in this method are as follows:

# Check if the kinetic energy of a secondary is smaller than the production threshold of the particle
set in the material. If it is smaller, the kinetic energy is added to the total energy deposit of the
parent track. Then the energy of the particle is assigned ‘zero’. This check is only done if the flag
ApplyCutFlag is set for the particle (by default it is set to ‘false’ for all particles - user may change it
in its G4VUserPhysicsList). If the track has the flag IsGoodForTracking ‘true’, this check will have
no effect (used mainly to track particles below threshold).

# The parentID and the process pointer which created this track are set.

* The secondary particle is added to the list of secondaries. If the particle has ‘zero’ kinetic energy, it is
added only if it has a rest process to be invoked at the beginning of its tracking.

The track status is set according to what the process defined

The second action in the second stage is to invoke the method G4SteppingManager: : InvokePostStepDolts,
which is in charge of calling the PostStepDolt methods of all processes.

* Invoke the PostStepDolt methods of the specified discrete processes (the ones selected by the PostStepGetPhys-
icallnteractionLength, and they return the ParticleChange. The order of invocation of processes is inverse to the
order used for the GPIL selection. After the execution of all PostStepDolt methods the following actions are
taken:

Update PostStepPoint of the step according to ParticleChange.

Update G4Track according to ParticleChange after each PostStepDolt.

Update safety after each invocation of PostStepDolt.

The secondaries from ParticleChange are stored to SecondaryList.

Apply the production cut to all created secondaries by invoking the private method ApplyProductionCut()
of G4SteppingManager . The details of this method is described in the previous paragraph of InvokeA-
longStepDolts() .

The track status is set according to what the process defined

The third action in the second stage is to invoke the method G4SteppingManager: : InvokeAtRestDolts.
This invocation is done only if the track passed from the event manager has the status ‘£ St opAndALive’. If this the
case the two methods (InvokeAlongStepDoIts and InvokePostStepDoIts) mentioned above will not be
executed. In the method ‘InvokeAtRestDolts’ the selection is executed to find the rest process which has the shortest
lifetime. After this selection, the corresponding rest process will be invoked:

* To select the process which has the shortest lifetime, the AtRestGPIL method of all active rest processes is called.
Each process returns an lifetime and the minimum one is chosen. This method return also the G4ForceCondition
flag, to indicate if the process is forced or not:

Forced : Corresponding AtRestDolt is forced.
NotForced : Corresponding AtRestDolt is not forced unless this process limits the step.

* Set the step length of current track and step to ‘zero’.

¢ Invoke the AtRestDolt methods of rest processes selected in the above step. Each invocation returns the Parti-
cleChange. The order of invocation of processes is inverse to the one used for the GPIL methods.
Completing the previous step, the following actions are taken:

Set the current process as a process which defined this step length.

Update the G4Step information by using final state information of the track given by a physics process.
This is done through the UpdateStepForAtRest method of the ParticleChange.

The secondaries from ParticleChange are stored to SecondaryList.

Apply the production cut to all created secondaries by invoking the private method
ApplyProductionCut () of G4SteppingManager. The details of this method is described
in the previous paragraph of InvokeAlongStepDoIts ().

The track is updated and its status is set according to what the process defined
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2.4.5 Ordering of Methods of Physics Processes

As shown in Fig. 2.4, °‘G4Track’ has ‘G4ParticleDefinition’ through ‘G4DynamicParticle’. The class
‘G4ParticleDefinition’ aggregates an object of ‘G4ProcessManager’ which has information of ordering of physics
processes the particle undertakes. G4SteppingManager invokes the processes at each phase just following the
process ordering given by the ProcessManager.

For some processes the order is important. GEANT4 provides by default the right ordering. It is always possible for
the user to choose the order of process invocations at the initial set up phase of GEANT4. This default ordering is the
following:

1. Ordering of GetPhysicallnteractionLength
¢ In the loop of GetPhysicallnteractionLength of AlongStepDolt, the transportation process has to be in-
voked at the end.
* In the loop of GetPhysicallnteractionLength of AlongStepDolt, the multiple scattering process has to be
invoked just before the Transportation process.
2. Ordering of Dolts
* Most cases ordering does not matter, though there are some exceptions. For example, the Cerenkov process
needs the energy loss information of the current step for its Dolt invocation. Therefore, the EnergyLoss
process has to be invoked before the Cerenkov process. This ordering is provided by the process manager.
Energy loss information necessary for the Cerenkov process is passed using G4Step (or the static dE/dX
table is used together with the step length information in G4Step to obtain the energy loss information).

2.5 Physics Processes

2.5.1 Design Philosophy

The processes category contains the implementations of particle transportation and physical interactions. All physics
process conform to the basic interface G4VProcess, but different approaches have been developed for the detailed
design of each sub-category.

For the decay sub-category, the decays of all long-lived, unstable particles are handled by a single process. This
process gets the step length from the mean life of the particle. The generation of decay products requires a knowledge
of the branching ratios and/or data distributions stored in the particle class.

The electromagnetic sub-category is divided further into the following packages:

* standard: handling basic properties for electron, positron, photon and hadron interactions,

* lowenergy: providing alternative models extended down to lower energies than the standard package,
* dna: providing DNA physics and chemistry simulation,

* highenergy: providing models for rare high energy processes,

* muons: handling muon interactions and energy loss propagator,

* adjoint: implementing reverse Monte Carlo approach,

* xrays: providing specific code for x-ray physics,

e optical: providing specific code for optical photons,

e utils: collecting utility classes used by the above packages.

It provides the features of openness and extensibility resulting from the use of object-oriented technology; alternative
physics models, obeying the same process abstract interface, are often available for a given type of interaction.

For hadronic physics, an additional set of implementation frameworks was added to accommodate the large number of
possible modelling approaches. The top-level framework provides the basic interface to other GEANT4 categories. It
satisfies the most general use-case for hadronic shower simulations, namely to provide inclusive cross sections and final
state generation. The frameworks are then refined for increasingly specific use-cases, building a hierarchy in which
each level implements the interface specified by the level above it. A given hadronic process may be implemented

2.5. Physics Processes 15



Geant4 User’s Guide for Toolkit Developers, Release 11.0

at any one of these levels. For example, the process may be implemented by one of several models, and each of the
models may in turn be implemented by several sub-models at the lower framework levels.

The hadronic sub-category is divided into the following packages:

management: providing the top level hadronic process classes;

cross_sections: providing inelastic and elastic cross sections for hadron-nucleon, hadron-nucleus and
nucleus-nucleus interactions; it also contains inelastic cross sections for gamma- and lepto-nuclear interactions;
models: providing hadronic final-state models; there is a further sub-level, corresponding to each model (abla,
abrasion binary_cascade, cascade, coherent_elastic, de_excitation, em_dissociation, fission, im_r_matrix, in-
clxx, lend, lepto_nuclear, management, parton_string, pre_equilibrium, qmd, quasi_elastic, radioactive_decay,
rpg, theo_high_energy, util);

processes: providing the in-flight hadronic physics processes: inelastic, elastic, capture and fission;
stopping: providing the nuclear capture of hadrons and muon at rest;

util: collecting utility classes used by the above packages.

2.5.2 Class Design

General

The object-oriented design of the generic physics process G4VProcess and its relation to the process manager is
shown in Fig. 2.5. Fig. 2.6 shows how specific physics processes are related to G4VProcess.

- currentParticle G4ParticleDefinition |

| G4ProcessTableMessenger

- theParticlgType

G4ProcessTable

G4ProcessManager

+ GetAtRestProcessVector()
+ GetAlongStepProcessVectar() G4ProcTableVector
+ GetPostStepProcessYector()
+ AddProcess()

+ GetProcessOrdering()
G4ProcesshtirVector |- + GetParticlaType(

g - GetAtributa()

\]% G4VProcess

G4ProcessVector

G4ProcessManagerMessenger

Fig. 2.5: Management of Physics Processes
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Fig. 2.6: Management of Physics Processes

2.5.3 Electromagnetic

The electromagnetic (EM) processes of GEANT4 follow the basic interfaces:

* G4VEnergyLossProcess;
e G4VEmProcess;
* G4VMultipleScattering.

The class diagram is shown in Fig. 2.7.

These base classes provide all management work of initialisation of processes, creation and filling of physics tables,
and generic run-time actions. Concrete process classes are responsible for the initialisation of parameters and defining
the set of models for the process. In some specific cases these interfaces are not applicable and the high level interface
G4VProcess is used.

Concrete physics models are implemented via EM model interfaces:

* G4VEmModel;
e G4VMscModel.

In the majority of use-cases when new EM physics is needed, it is enough to create only a new model class and use it
in the existing EM process class. A new model may be added to an existing process using AddEmModel (G4int,
GAVEmModel*, G4Regionx) method. The class diagram is shown in Fig. 2.8.

2.5.4 Hadronic

The hadronic physics of GEANT4 has been designed to allow three basic types of modelling: data-driven,
parameterisation-driven, and theory-driven. Five implementation frameworks have been used to allow great flexi-
bility in these modelling approaches. An overview of the first two framework levels will be given here (for a wider
and more detailed coverage please refer to the next Chapter).

The top-level framework defines the hadronic processes, and provides the basic interface to other GEANT4 categories.
All processes have a common base-class G4VProcess, from which a set of specialised classes are derived. Two
of them are used as base classes for hadronic processes for particles (G4VDiscreteProcess), and for processes
like radioactive decay that can be both in-flight or at-rest (G4VRestDiscreteProcess). Each of these classes
declares two types of methods: one for calculating the time to interaction (for at-rest processes) or the physical
interaction length (for in-flight processes), allowing tracking to request the information necessary to decide on the
process responsible for final-state production.

2.5. Physics Processes 17
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Fig. 2.7: Design of EM physics processes.
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Fig. 2.8: Design of EM physics processes.
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Note on at-rest processes: starting with GEANT4 version 9.6 - when the Bertini and Fritiof final-state models have been
extended down to zero kinetic energy and used also for simulating the nuclear capture at-rest - the at-rest processes de-
rive from G4HadronicProcess, hence from G4VDiscreteProcess, instead than from G4VRestProcess
as in the initial design of at-rest processes. This requires some adaptation a discrete process to handle an at-rest
one using top level interface G4VProcess. A different solution, under consideration but not yet implemented,
would be instead to have G4AHadronicProcess inheriting from G4VRestDiscreteProcess: in this way,
G4HadronicProcess, and therefore any theory-driven final-state model, could be deployed for any kind of
hadronic process, including capture-at-rest processes and radioactive decays.

The class diagram is shown in the Fig. 2.9.
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$PostStepDolt()
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¥PostStepDolt() YAtRestDolt()
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<<static>> EnablelsotopeProductionGlobally()
Yocstatics> DisablelsotopeProductionGlabally()
‘EnablelsolopeCounting()
9 DisablelsotopeCounting()

Fig. 2.9: First level implementation framework of the hadronic category of GEANT4.

Whenever possible, it is preferable to add any new hadronic physics to GEANT4 in terms of a model, and assign the
model to an existing process, rather than develop a new, specific process. However, in some cases, a directly imple-
mented hadronic process may be necessary. In these cases, the new process must derive from G4HadronicProcess
and the following three methods must be implemented:

virtual G4VParticleChangex PostStepDolt (const G4Track&, const G4Step&) ,
virtual G4bool IsApplicable (const G4ParticleDefinitioné&) ,
G4double GetMeanFreePath (const G4Track& aTrack, G4double, G4ForceConditionx)

More details on these methods will be provided in the next Chapter.

At the next level of abstraction, only processes that occur for particles in flight are considered. For these, the main
design requirement is to treat cross sections and the final-state models (i.e. the models responsible for the production
of the secondaries) independently, so that it is possible to change cross section while keeping a particular final-state
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model, or, vice versa, to keep a given cross section while replacing the final-state model. Moreover, a set of cross
sections can be used for a single hadronic process to cover a wide kinematical range (e.g. from thermal energies up to
several tera-electronvolts of the projectile kinetic energy). Similarly, for the same reason, a set of different final-state
models can be used for a single hadronic process, allowing the overlapping between two models in an interval of the
projectile kinetic energy, to insure a smooth transition between these models.

The class diagram for hadronic cross-sections is shown in Fig. 2.10 and in Fig. 2.11 for final-state models.
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Fig. 2.10: Second level implementation framework of the hadronic category of GEANT4: cross-section aspect.
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Fig. 2.11: Second level implementation framework of the hadronic category of GEANT4: final-state production aspect.

Each hadronic process is derived from G4HadronicProcess, which holds a list of “cross section data sets”. All
cross section data set classes are derived from the abstract class G4VCrossSectionDataSet. The process stores
and retrieves the data sets through a data store that acts like a FILO (First-In-Last-Out) stack. Details on how to write
a new hadronic cross section set will be provided in the next Chapter.
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The G4HadronicProcess class provides a registration service for classes deriving from
G4HadronicInteraction, and delegates final-state production to the applicable model. Models inherit-
ing from G4HadronicInteraction can be restricted in applicability in projectile type and energy, and can be
activated/deactivated for individual materials and elements. Details on how to write a new hadronic final-state model
will be provided in the next Chapter.

2.6 Hits and Digitisation

2.6.1 Design Philosophy

In GEANT4 a hit is a snapshot of a physical interaction or an accumulation of interactions of a track or tracks in a
“sensitive” detector component. A digitisation, or digit, represents a detector output, such as an ADC/TDC count or a
trigger signal. A digit is created from one or more hits and/or other digits.

Given the wide variety of GEANT4 applications, ways of describing detector sensitivity and the quantities to be stored
in the hits and digits vary greatly. This category therefore provides only abstract classes for both detector sensitivity
and hits/digits. It also provides tools for organising the hits/digits into collections.

2.6.2 Class Design

* G4VHit - this class has all the information about a particular hit caused by a single step.

* G4VHitsCollection - base class for a collection of hits.

* G4THitsCollection - template class for a collection of hits of the (template) type. Implements
G4VHitsCollection interface providing efficient storage of hits via allocators.

* G4HCofThisEvent - container class for collections of hits for the current event.

* G4VSensitiveDetector - pure virtual class representing a sensitive element responsible for creating and manag-
ing associated hits. The user should implement the method ProcessHits a filter and readout geometry (optional)
are also allowed.

* G4SDManager - singleton managing sensitive detectors.

* G4SDMessenger - SD manager associated messenger.

* G4SDStructure - used exclusively used by G4SDManager for handling the tree structure of the user’s sensitive
detector names. Each branch represents the hits in given sub-detector. For example, the first level of branches
may consist of a tracker, ECAL, and HCAL, while the second level, in HCAL, consists of the barrel and endcaps.
Finally the barrel may have phi-slices, Z-slices, etc.

For digitisation features a similar design as for hits is applied:

* G4VDigi - an abstract (base) class for all G4 digitisations. This could be data as simple as a singe byte, or as
complex as an Ntuple.

* G4VDigiCollection - base class for a collection of digits.

* G4TDigiCollection - template class for a collection of digits of the (template) type. Implements
G4VDigiCollection interface providing efficient storage of digits via allocators.

* G4DCofThisEvent - container class for collections of digits for the current event.

* G4VDigitizerModule - the class of objects which transform the hits deposited by particles into digitisations.

* G4DigiManager - singleton managing digitiser modules.

* G4DigiMessenger - Digi manager associated messenger.

The UML class diagram for sensitivity related classes is shown in the following class diagram. Fig. 2.12 shows the
general management of hit classes.
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Fig. 2.12: Overview of hit classes management. Classes in grey represent the main components that a user must
subclass to implement a sensitive detector. User is also responsible of creating the binding between G4THitsCollection
and its hit class.

2.7 Geometry

2.7.1 Design Philosophy

The geometry category provides the ability to describe a geometrical structure and propagate particles efficiently
through it. This is done in part with the aid of two central concepts, the logical and physical volumes. A logical
volume represents a detector element of a given shape which may contain other volumes, and which may have other
attributes. It has access to other information which is independent of its physical location in the detector, such as
material and sensitive detector behaviour. A physical volume represents the spatial positioning or placement of the
logical volume with respect to an enclosing mother (logical) volume. Thus a hierarchical tree structure of volumes
can be built with each volume containing smaller volumes (which may not overlap). Repetitive structures can be
represented by specialised physical volumes, such as replicas and parameterised placements, sometimes resulting in a
large savings in memory.

In GEANT4 the logical volume has been refined by defining the shape as a separate entity, called a solid. Solids with
simple shapes, like rectilinear boxes, trapezoids, spherical or cylindrical sections or shells, each have their properties
coded separately, in accord with the concept of Constructed Solid Geometry (CSG). More complex solids are defined
for specific use, or having their surfaces approximated by facets (tessellated solids).

Another way to build solids is by Boolean combination - union, intersection and subtraction. The elemental solids
should be CSGs.

Although a detector is naturally and best described as by a hierarchy of volumes, efficiency is not critically dependent
on this. An optimisation technique, called voxelization, allows efficient navigation even in “flat” geometries, typical
of those produced by CAD systems.
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2.7.2 Class Design

G4GeometryManager - responsible for managing “high level” objects in the geometry subdomain, notably
including opening and closing (“locking”) the geometry, and creating/deleting optimisation information for
G4Navigator. The class is a “singleton”.

G4LogicalVolumeStore - a container for optionally storing created logical volumes. It enables traversal of all
logical volumes by the Ul/usetr/etc.

G4LogicalVolume - represents a leaf node or unpositioned subtree in the geometry hierarchy. It may have
daughters ascribed to it, and is also responsible for retrieval of the physical and tracking attributes of the physical
volume that it represents. These attributes include solid, material, magnetic field, and optionally user limits,
sensitive detectors, etc. Logical volumes are optionally entered into the G4Logical VolumeStore.
G4MagneticField - a class responsible for the magnetic field in each volume, including the calculation of
particle trajectories along curved paths. In cases where the geometry step limits the particle’s step, the distance
calculated is guaranteed to be the distance to a volume boundary.

G4Navigator - a class used by the tracking management, able to obtain/calculate tracking-time geometrical
information such as distance to the next volume, or to find the physical volume containing a given point in
the world reference system. The navigator maintains a transformation history and other information used to
optimise the tracking time performance.

G4NavigationHistory - responsible for maintenance of the history of the path taken through the geometrical
hierarchy. It is principally a utility class for use by G4Navigator.

G4NormalNavigation - a utility class for navigation in volumes containing only G4PVPlacement daughter
volumes.

G4ParameterisedNavigation - a utility class for navigation in volumes containing a single G4PVParameterised
volume for which voxels for the replicated volumes have been constructed.

G4VoxelNavigation - a utility class for navigation in volumes containing only G4PVPlacement daughter vol-
umes for which voxels have been constructed.

G4ReplicaNavigation - a utility class for navigation in volumes containing a single G4PVParameterised volume
for which voxels for the replicated volumes have been constructed.

G4Physical VolumeStore - a container for optionally storing created physical volumes. It enables traversal of all
physical volumes by the Ul/user/etc. All solids should be registered with G4Physical VolumeStore, and removed
on their destruction. It is intended principally for the UI browser.

G4VPhysicalVolume - a volume positioned within and relative to a given mother volume, and also represented
by a given logical volume. They are optionally entered into the G4Physical VolumeStore.

G4PVPlacement - a physical volume corresponding to a single touchable detector element, positioned within
and relative to a mother volume.

G4PVReplica - a physical volume representing many identically formed touchable detector elements, differing
only in their positioning. The elements’ positions are determined by means of a simple formula, and the elements
completely fill the containing mother volume.

G4PVParameterised - a physical volume representing many touchable detector elements differing in their
positioning and dimensions. Both are calculated by means of a G4VParameterisation object. Each element’s
position is calculated as per G4PVReplica, and each element’s shape can be modified by means of a user supplied
formula.

G4VPVParameterisation - a parameterisation class able to compute the transformation and, indirectly, the
dimensions of parameterised volumes, given a replication number.

G4SmartVoxelProxy - a class for proxying smart voxels. The class represents either a header (in turn referring
to more VoxelProxies) or a node. If created as a node, calls to GetHeader cause an exception, and likewise
GetNode when a header.

G4SmartVoxelHeader - represents a single axis of virtual division. Contains the individual divisions which are
potentially further divided along different axes.

G4SmartVoxelNode - a single virtual division, containing the physical volumes inside its boundaries and those
of its parents.

G4VoxelLimits - represents limitation/restrictions of space, where restrictions are only made perpendicular to
the Cartesian axes.

G4SolidStore - a container for optionally storing created solids. It enables traversal of all/any solids by the
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Ul/user/etc. The class is a “singleton”.

* G4VSolid - position independent geometrical entities. They have only ‘shape’, and encompass both CSG and
boundary representations. They are optionally entered into the G4SolidStore. This class defines, but does not
implement, functions to compute distances to/from the shape. Functions are also defined to check whether a
point is inside the shape, to return the surface normal of the shape at a given point, and to compute the extent of
the shape.

* G4VTouchable - a class that maintains a “reference” on a given touchable element of the detector - a kind of
bookmark. It enables a given detector element to be saved during tracking (in case of Booleans/user code/etc.)
and the corresponding G4PhysicalVolume retrieved later, with its “state” information (path through the tree)
optionally restored so that navigation can be restarted. G4Touchables provide fast access to the transformation
from the global reference system to that of the saved detector element.

* G4TouchableHistory - object representing a touchable detector element, and its history in the geometrical
hierarchy, including its net resultant local->global transform.

* G4GRSSolid - object representing a touchable solid. It maintains the association between a solid and its net
resultant local-to-global transform.

* G4GRSVolume - object representing a touchable detector element. It maintains associations between a physical
volume and its net resultant local-to-global transform.

* G4AffineTransform - a class for geometric affine transformations. It supports efficient arbitrary rotation and
transformation of vectors and the computation of compound and inverse transformations. A